Complex Interpolation of Besov, Modulation and E^{λ} -spaces

Jan Hausmann

Besov spaces $B_{p,q}^s(\mathbb{R}^n)$, where $s \in \mathbb{R}$ and $1 \leq p,q \leq \infty$, were introduced in 1959 by O.V. Besov. They consist of tempered distributions whose Besov norm is finite. To compute $||f||_{B_{p,q}^s}$ one smoothly decomposes f into parts $\Delta_k f$ whose Fourier support lies in dyadic rings of radii $\sim 2^k$. Then, $||f||_{B_{p,q}^s} := \left\| (2^{ks} \|\Delta_k f\|_{L_p})_{k \in \mathbb{N}_0} \right\|_{\ell_q}$.

Modulation spaces $M_{p,q}^s(\mathbb{R}^n)$ are constructed similarly. They were introduced in 1983 by H.G. Feichtinger. In contrast to Besov spaces the Fourier support of the parts $\Box_k f$ lie in balls of a uniform radius and centered around $k \in \mathbb{Z}^n$. The norm is given by $\|f\|_{M_{p,q}^s} := \left\| (1+|k|^2)^{s/2} \|\Box_k f\|_{L_p} \right\|_{k \in \mathbb{Z}^n} \right\|_{\ell_q}$, i.e., the weight 2^k is replaced by $(1+|k|^2)^{1/2}$.

 E^{λ} -spaces $E_{p,q}^{\lambda}(\mathbb{R}^n)$ were introduced by B. Wang in 2006 and use the decomposition of Modulation spaces and the weight of Besov spaces.

In this talk, we introduce a framework describing all of the spaces above and their complex interpolation. To the best of the author's knowledge, the interpolation for E^{λ} -spaces is not to be found in the literature.